Application of a New Hybrid Deep Learning Model That Considers Temporal and Feature Dependencies in Rainfall–Runoff Simulation

نویسندگان

چکیده

Runoff forecasting is important for water resource management. Although deep learning models have substantially improved the accuracy of runoff prediction, temporal and feature dependencies between rainfall–runoff time series elements not been effectively exploited. In this work, we propose a new hybrid model to predict hourly streamflow: SA-CNN-LSTM (self-attention, convolutional neural network, long short-term memory network). The advantages CNN LSTM in terms data extraction from are combined with self-attention mechanism. By considering interdependences sequence timesteps features, prediction performance enhanced. We explored Mazhou Basin, China; compared its performances LSTM, CNN, ANN (artificial network), RF (random forest), SA-LSTM, SA-CNN. Our analysis demonstrated that robust different flood magnitudes lead times; it was particularly effective within times 1–5 h. Additionally, mechanism alone, respectively, at some however, overall unstable. contrast, integrating exhibited better robustness. Overall, study considers importance then proposes improve conventional prediction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

assessment of deep word knowledge in elementary and advanced iranian efl learners: a comparison of selective and productive wat tasks

testing plays a vital role in any language teaching program. it allows teachers and stakeholders, including program administrators, parents, admissions officers and prospective employers to be assured that the learners are progressing according to an accepted standard (douglas, 2010). the problems currently facing language testers have both practical and theoretical implications but the first i...

a fundamental study of "histiriographic metafiction", and "literary genres", as introduced in "new historical philosophy", and tracing them in the works of julian barnes.

abstract a fundamental study of “historio-graphic metafiction” and “literary genres”, as introduced in “new historical philosophy”, and tracing them in the works of julian barnes having studied the two novels, the porcupine and arthur & george, by julian barnes, the researcher has applied linda hutcheon’s historio-graphic metafictional theories to them. the thesis is divided into five cha...

15 صفحه اول

on the comparison of keyword and semantic-context methods of learning new vocabulary meaning

the rationale behind the present study is that particular learning strategies produce more effective results when applied together. the present study tried to investigate the efficiency of the semantic-context strategy alone with a technique called, keyword method. to clarify the point, the current study seeked to find answer to the following question: are the keyword and semantic-context metho...

15 صفحه اول

an application of equilibrium model for crude oil tanker ships insurance futures in iran

با توجه به تحریم های بین المملی علیه صنعت بیمه ایران امکان استفاده از بازارهای بین المملی بیمه ای برای نفتکش های ایرانی وجود ندارد. از طرفی از آنجایی که یکی از نوآوری های اخیر استفاده از بازارهای مالی به منظور ریسک های فاجعه آمیز می باشد. از اینرو در این پایان نامه سعی شده است با استفاده از این نوآوری ها با طراحی اوراق اختیارات راهی نو جهت بیمه گردن نفت کش های ایرانی ارائه نمود. از آنجایی که بر...

Melanoma detection with a deep learning model

Background: Skin cancer is one of the most common forms of cancer in the world and melanoma is the deadliest type of skin cancer. Both melanoma and melanocytic nevi begin in melanocytes (cells that produce melanin). However, melanocytic nevi are benign whereas melanoma is malignant. This work proposes a deep learning model for classification of these two lesions.    Methods: In this analytic s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Remote Sensing

سال: 2023

ISSN: ['2315-4632', '2315-4675']

DOI: https://doi.org/10.3390/rs15051395